P.I. G-RINGS AND THE CONTRACTABILITY OF PRIMES

BY

AMIRAM BRAUN

ABSTRACT

Let $R = F\{x_1, \dots, x_k\}$ be a prime affine p.i. ring and S a multiplicative closed set in the center of R, Z(R). The structure of <u>G</u>-rings of the form R_s is completely determined. In particular it is proved that $\overline{Z(R_s)}$ — the normalization of $Z(R_s)$ — is a prüfer ring, $1 \le k.d(R_s) \le p.i.d(R_s)$ and the inequalities can be strict. We also obtain a related result concerning the contractability of q, a prime ideal of Z(R) from R. More precisely, let Q be a prime ideal of R maximal to satisfy $Q \cap Z(R) = q$. Then k.d Z(R)/q = k.d R/Q, h(q) = h(Q)and h(q) + k.d Z(R)/q = k.d z(R). The last condition is a necessary but not sufficient condition for contractability of q from R.

Introduction

Given $R = F\{x_1, \dots, x_k\}$, a prime affine p.i. ring, one of our main purposes is to characterize the *G*-rings of the form R_s (*R* localized by *S*, where $0 \notin S$ is a multiplicative closed set of Z(R), the center of *R*). By a *G*-ring we mean a prime ring such that the intersection of all non-zero ideals is non-zero. We get the following theorem.

THEOREM. Let $R = F\{x_1, \dots, x_k\}$ be a prime affine p.i. ring, $R_s - a$ G-ring where $S \subset Z(R)$, a multiplicative closed set. Then

(1) $Z(R_s)$, R_s , have a finite number of prime ideals.

(2) Each $q \in Z(R_s)$, a prime ideal, is contracted in an isolated fashion from R_s .

(3) $k.d(R_s) \leq p.i.d(R_s) = n$ ($k.d(R_s) \equiv Krull. \dim. (R_s)$).

(4) For each prime ideal q of $Z(R_s)$, q_q is finitely generated and if q is maximal q is finitely generated.

(5) $Z(R_s)$, the normalization of $Z(R_s)$, is a prüfer ring.

(6) Each finitely generated ideal in $\overline{Z(R_s)}$ is generated by n+1 (or less) elements.

Received January 8, 1981

Unlike the noetherian commutative case it might happen that $k.d(R_s) > 1$. An example (essentially due to G. Bergman) illustrates it.

A related question that we try to handle is the following. Given $q \triangleleft Z(R)$, $R = F\{x_1, \dots, x_k\}$ an affine prime p.i. ring, is there a prime ideal Q in R such that $Q \cap Z(R) = q$? Examples due to Rowen [9] and L. Small (unpublished) show that this is not always the case. On the other hand if there exists $p \subsetneq q, p$ a prime ideal of Z(R), $P \subset R$, a prime ideal of R with $P \cap Z(R) = p$, p.i.d(P) = p.i.d(R) and h(q/p) = 1, then it is well known that q is contractable. Again this is not always the case, in fact, in trying to approximate a contractable prime q from below, the $R_s - G$ rings occur. Anyhow certain properties of contractable primes are obtained, in fact we have the following

THEOREM. $R = F\{x_1, \dots, x_k\}$ is an affine prime p.i. ring, $q \in Z(R)$ a prime ideal. Let $Q \in R$ be a prime ideal, maximal with respect to $Q \cap Z(R) = q$. Then

(1) k.d. Z(R)/q = k.d R/Q.

(2) h(q) = h(Q).

(3) k.d. Z(R)/q + h(q) = k.d Z(R).

One can regard (3) of the last theorem as a necessary condition for contractability of a prime ideal q in Z(R). This condition is not sufficient as the example of Rowen [9] shows.

As for notations, we mainly use the same as in [1]. Let us mention some. We write $q \triangleleft C$ meaning that q is an ideal of C. We always write $C \equiv Z(R)$ where R is an affine prime p.i. ring. $\overline{Z(R)}$ = the integral closure of Z(R) in its quotient field. We also use the canonical isomorphism $R_q/P_q \cong (R/P)_q$. Here $q \triangleleft C$ is prime and R_q means the localization of R with respect to C - q. Now $(R/P)_q$ means a localization of R/P with respect to S = C - q + P/P in Z(R/P). S is a multiplicatively closed set if there exists a $Q \triangleleft R$, prime with $Q \supseteq P$ and $Q \cap C = q$, and we will use it under such assumptions. We have cause for using T(R) — the trace envelope of R, $T(R) \equiv R[c_1, \dots, c_e]$ where c_i , $i = 1, \dots, e$ are the coefficients of the characteristic polynomials of all monomials in x_1, \dots, x_k of degree $\leq n^2$ (n = p.i.d (R)). T(R) is finite over its center. We use $h(q) \equiv height(q)$ — the maximal length of chains of prime ideals descending from q. The following commutative conventions are used: k.d(R) stands for the classical Krull dimension of R, and by "f.g. module" we mean a finitely generated module.

Finally R — a prime p.i. ring with k. dim $R \ge 1$ is said to be a G-ring if there exists $x \in Z(R)$ with R[1/x] a simple (artinian) ring. This is equivalent to the fact that the intersection of all non-zero ideals in R is non-zero. (See Kaplansky's *Commutative Rings* for the Commutative Analogue.)

The paper is organized as follows. \$1 is purely commutative and of independent interest (we think) the result of which is used in \$3. In \$2 we prove theorems on contractability as well as related results. In \$3 we complete the proof of the structure of *G*-rings.

§1. All rings are commutative

The main result here is the following

THEOREM 1.1.⁺ Let C be a commutative domain (not necessarily noetherian) satisfying the following assumptions:

(1) C has finitely many prime ideals;

(2) for all $p \triangleleft C$, prime p_p is a f.g. ideal in C_p .

Then \overline{C} is a prüfer ring.

PROOF. We prove the theorem via induction on k.d(C), and without loss of generality we may assume that C is local with maximal ideal m. By induction we have that \overline{C}_p is prüfer for every prime ideal $p \subsetneq m$. Let $x \in C$ with rad(xC) = mand let $T = C[1/x] \cap \overline{C}$. We shall show that in T every maximal ideal is invertible. We firstly show that T/xT is a finite $C/xT \cap C$ module; the argument we use is essentially the one in [5], [11]. Observe that C/xC, $C/xT \cap C$ are artinian, k.d. (T/xT) = 0 and every maximal in T contains x; we have that $x^{e}T \cap C \subseteq x^{e+1}T \cap C + xC$ for some e by the artinian property of C/xC. It suffices to show that $T/xT \subseteq x^{-e}C + xT/xT$ since the latter is a f.g. module over $C/xT \cap C$ hence artinian. Let $d \in T$, then $d \cdot x^n \in C$ for some n = n(x) and we can take n > e. Now $x^n \cdot d \in x^n T \cap C$ hence $x^n d = x^{n+1} d_1 + x d_2$ where $d_1 \in T$, $d_2 \in C$ hence $d \in xT + x^{-(n-1)}C$ and after n - e steps we get that $d \in xT + x^{-e}C$ hence $T/xT \subset x^{-e}c + xT/xT$. This implies that every maximal ideal in T is f.g. We next show that each maximal q in T is invertible. Indeed, let $q^{-1} \cdot q = q$ $(q^{-1} \neq T)$ and $a \in q^{-1}$, then $a \in \overline{C}$ since q is a f.g. ideal, also $ax \in aq \subseteq q$ hence $(ax)x^n \in C$ for some *n*, hence $a \in C[1/x]$ and consequently $a \in C[1/x] \cap \overline{C} =$ T, a contradiction. Thus $q^{-1} \cdot q = T$.

We now show that $\overline{T} = \overline{C}$ is prüfer. We may assume that T is local with maximal m'. We also have that \overline{T}_p is prüfer for every prime $p, p \subsetneq m'$. We recall some standard facts: given $a, b \in T$, let $H(a, b) \equiv$ $\{f(x, y) \in T[x, y] \mid f(at, bt) = 0\}$ where x, y, t are variables and let C(H) = the ideal in T generated by the coefficients of the elements in H(a, b); then \overline{T} is prüfer iff C(H(a, b)) = T for every $a, b \in T$ [2]. Let $H \equiv H(a, b)$ one may easily

[†] I would like to thank W. Vasconcelos for improving an earlier version of this result.

check that $C(H_p) = C(H)_p$ where $p \triangleleft T$ and prime; it is also clear that H is a prime ideal in T[x, y]. Let $p \subsetneq m'$ be a prime ideal; then \overline{T}_p is prüfer hence $C(H_p) = C(H)_p = T_p$ and consequently $C(H) \not \subset p$. Thus if $C(H) \neq T$ we have that $\operatorname{rad}(C(H)) = m'$. Next one observes that $C(H)^{-1}C(H) \equiv C(H)$. Indeed let $d \in C(H)^{-1} \subset K$, where K is the q. field of T, and $\lambda = \sum C_{ij}x^iy^j \in H$ then $\sum C_{ij}(at)^i(bt)^j = 0$ hence $\sum (dC_{ij})(at)^i(bt)^j = 0$, but $dC_{ij} \in T$ hence $\sum dC_{ij}x^iy^j \in H$. Consequently $C(H)^{-1}C(H) = C(H)$, $(m')^{-1}C(H) = C(H)$. But $(m')^{-1}m' = T$ hence C(H) = m'C(H); but C(H) is f.g. and we get a contradiction via Nakayama. Thus $C(H) \not \subset m'$, that is, C(H) = T. Q.E.D.

REMARK 1.2. In an earlier version of this theorem we imposed an additional assumption on C, namely, given $q, p \triangleleft C$, primes with $q \subseteq p$ and k.dim $(C/q)_p = 1$ then $(C/q)_p$ is Japanese, and we got the following additional conclusion: \overline{C} is a finite module over C and in particular for every $p \triangleleft \overline{C}$, prime, p_p is a f.g. ideal.

§2. All rings are p.i. rings

In this section $R = F\{x_1, \dots, x_k\}$ is a f.g. prime p.i. ring (\equiv affine). $S \subset Z(R)$ will always denote a multiplicatively closed set, $0 \notin S$, and R_s is the localization obtained by inverting S.

LEMMA 2.1. Let R_s be a G-ring (R, S are as mentioned above). Then R_s , $Z(R_s)$ have finitely many prime ideals and every prime in $Z(R_s)$ is contracted in an isolated fashion from a prime in R_s .

PROOF. R_s being a G-ring implies that there are only finitely many height one primes in R_s since there exists $\gamma \in \cap P$, $\gamma \neq 0$, $\gamma \in Z(R)$ and the intersection is on all primes of R_s , but the minimal primes above γR_s are finite in number since the same is true for γR in R [7, p. 107]. We may therefore assume that dim $R_s > 1$. Say $k \ge 2$ is the first integer with infinitely many primes of height k. There exists P_{k-1} , a prime ideal in R_s , with $h(P_{k-1}) = k - 1$ and P_{k-1} is contained in infinitely many primes of height k. Let $P_{k-2} \subsetneq P_{k-1}$, prime, we denote $R_s/P_{k-2} \equiv R_s^*$, $P_{k-1}/P_{k-2} = P_{k-1}^*$ and assume that $h(P_{k-1}^*) = 1$. By [12, lemma 4] there exists a prime P'_{k-1} in $T(R_s^*)$ with $R_s^* \cap P'_{k-1} = P_{k-1}^*$. We have $R_s^*/P_{k-1}^* \subset T(R_s^*)/P'_{k-1}$ and by [7, p. 110] all but a finite number of the infinitely many height one primes in R_s^*/P_{k-1}^* are contracted from $T(R_s^*)/P'_{k-1}$. Let $P^* \supset P_{k-1}^*$ prime with $h(P^*) = h(P_{k-1}^*) + 1$ and $P^1 < T(R_s^*)$ prime with $P^1 \gneqq P'_{k-1}$, $P^1 \cap R_s^* = P^*$. Then $h(P^1) > 1$ and there are infinitely many primes $\{W_\alpha\}$ in $T(R_s^*)$ with $h(W_\alpha \cap R_s^*) = 1$ for all but finitely many α 's. Indeed, if $W_{\beta} = W$ with $h(W \cap R_{s}^{*}) > 1$ then $W \cap R_{s}^{*} = P^{*}[(h(P^{*}) = 2)]$ and $W \cap R_{s}^{*} \subset P^{*}]$ but then W is a minimal prime over $P^{*}T(R_{s}^{*})$ in $T(R_{s}^{*})$ which is noetherian. By the same argument $\{W_{\alpha} \cap R_{s}^{*}\}$ is an *infinite* family of ideals. Let $V_{\alpha} \triangleleft R_{s}$ prime with $V_{\alpha}^{*} = W_{\alpha} \cap R_{s}^{*}$, then $V_{\alpha} \subsetneq P$ since $V_{\alpha}^{*} \subsetneq P^{*}$, $V_{\alpha} \supsetneq P_{k-2}$ but $h(P) = h(P_{k-1}) + 1 = k$ hence $h(V_{\alpha}) = k - 1$, a contradiction to the minimality of k.

We next show that each prime p in $Z(R_s)$ is contracted from R_s and hence there are finitely many primes in $Z(R_s)$. We argue by induction on h(p). The case h(p) = 1 is well known (e.g., [1]). Say h(p) = k, by induction there are only finitely many primes $p_1, \dots, p_r \subsetneq p$. Let $x \in p \setminus (p_1 \cup \dots \cup p_r)$ then $xR_s \subsetneq R_s$ (otherwise x is a unit). Let $rad(xR_s) = V_1 \cap \dots \cap V_t$ then $(V_1 \cap Z(R_s)^{e_1} \cdots (V_t \cap Z(R_s))^{e_t} \subseteq xR_s \cap Z(R_s) = xZ(R_s) \subset p$ hence $p = V_i \cap$ $Z(R_s)$ for some j. Finally, each prime in $Z(R_s)$ is contracted in an isolated fashion from one in R_s . This is achieved by Lemma 2.3 and an easy induction on the height of primes in $Z(R_s)$.

REMARK 2.2. Via the same lines one can prove the same for $R = \Lambda\{x_1, \dots, x_k\}$ where Λ is merely a central noetherian domain and R is a prime p.i. ring.

LEMMA 2.3. Let $p \triangleleft C$, $P \triangleleft R$, prime ideals with $P \cap C = p$ and P is maximal with respect to this property. Suppose $Q_1 \supset Q_2 \supsetneq P$ are primes with $Q_1 \cap C = Q_2 \cap C = q$, satisfying

(1) $h(Q_2) = h(P) + 1$,

(2) $(R/P)_q$ is a G-ring.

Then $Q_1 = Q_2$.

PROOF. Let $(R/P)_q \equiv R^* \simeq R_q/P_q$, $C_q/P_q \simeq (C/P)_q \equiv D$, we have $D \subset R^*$. By the maximality of P and (2) we have that R^* is a G-ring, $k.d(R^*) \ge 1$, hence $T(R^*)$ is a G-ring, but being noetherian implies that k.d $T(R^*) = 1$.

We need the following observation: Let $\overline{v \triangleleft Z(T(R^*))}$, prime and $v \cap D' = w$, where D' is the integral closure of D in $\overline{Z(T(R^*))}$. We have that $k.d Z(T(R^*)) = k.d T(R^*) = 1$ hence by Zarisky's Main Theorem h(w) = 1 and $D'_w = \overline{Z(T(R^*))}_v$ is a D.V.R.

Continuing the proof let $Q_1^* = (Q_1/P)_q$, $Q_2^* = (Q_2/P)_q$, then $h(Q_2^*) = 1$. R^*D' is a central integral extension of R^* , hence we have by "Going Up" (e.g., [10]) prime ideals in R^*D' , $Q_1' \supset Q_2'$ with $h(Q_1') = h(Q_1^*)$, $h(Q_2') = h(Q_2^*)$ and $Q_1' \cap R^* = Q_1^*$, $Q_2' \cap R^* = Q_2^*$. Let Q be a prime ideal in $T(R^*)\overline{Z(T(R^*))}$ with $Q \cap R^*D' = Q_2'$, h(Q) = 1 (height one in R^* is contracted from one in $T(R^*)$ hence one in $T(R^*)\overline{Z(T(R^*))}$, e.g., [12]). Let $v = Q \cap \overline{Z(T(R^*))}$ and $w = v \cap D'$, then $Q'_2 \cap D' = w$. Let $Q'_1 \cap Z(R^*D') = t$ and $Q'_2 \cap Z(R^*D') = s$, then $t \supseteq s$. We have the following inclusions:

$$D' \subseteq Z(R^*D') \subset R^*D' \subset T(R^*)Z(T(R^*))$$

$$\cup \qquad \cup$$

$$t \qquad Q'_1$$

$$\cup \qquad \cup$$

$$w \subset s \qquad \subset Q'_2 \qquad C \qquad Q$$

Now, $t \cap D' = s \cap D'$ since D' is integral over D and $(q/p)_q = (t \cap D') \cap D = (s \cap D') \cap D$; but $s \cap D' = w$ and D'_w is a D.V.R. by the previous observation, hence $D'_w = Z(R^*D')_w = Z(R^*D')_t$, h(t) = 1 and s = t. But R^*D' is a localization of an integral extension of an affine p.i. ring and Krull dim $Z(R^*D')_t = 1$, by [1] we get that $h(Q'_1) = h(Q'_2)$ and consequently $h(Q^*_1) = h(Q^*_2) = 1$. Q.E.D.

THEOREM 2.4. Let $R = F\{x_1, \dots, x_k\}$ be a prime p.i. ring, $q \triangleleft C$ prime. Let $Q \triangleleft R$ be prime with Q being maximal to satisfy $Q \cap C = q$. Then $h(q) \leq h(Q)$ and k.dim C/q = k.dim R/Q.

PROOF. Let $q_1 \supset q$, $q_1 \triangleleft C$ be a minimal among the prime ideals of C such that there exists $Q_1 \triangleleft R$, prime, $Q_1 \supset Q$ and $Q_1 \cap C = q_1$. If $q_1 = q$ then by the choice of Q, Q is a maximal ideal in R hence q is maximal in C [7, p. 102] hence $h(q) \leq k.\dim C = k.\dim R = h(Q)$. We may assume that $q_1 \leq q$ and further assume that $h(Q_1) = h(Q) + 1$ (again by the choice of Q and q_1). We have that $(C/q)_{q_1} \cong C_{q_1}/q_{q_1} \subset R_{q_1}/Q_{q_1} \cong (R/Q)_{q_1}$. The assumptions above and the minimality of q_1 imply that every non-zero ideal prime ideal of $(R/Q)_{q_1}$ contracts to $(q_1/q)_{q_1}$, hence $(R/Q)_{q_1}$ is a G-ring, and by Lemma 2.3 we have that Krull dim $(R/Q)_{q_1}$ = 1 and if $Q' \supset Q$, prime with $Q' \cap C = q_1$ then h(Q') = h(Q) + 1, thus (Q_1, q_1) satisfies the maximality property. We continue the process with (q_1, Q_1) , by choosing $q_2 \supset q_1$, $q_2 \triangleleft C$ minimal above $q_1 \cdots$. We get the following chain of prime ideals $q_0 = q \not\subseteq q_1 \not\subseteq q_2 \cdots \not\subseteq q_m$, $Q_0 = Q \not\subseteq Q_1 \not\subseteq Q_2 \cdots Q_{m-1} \not\subseteq Q_m$, $q_i \triangleleft C$, $Q_i \triangleleft R$ are prime ideals for $i = 0, \dots, m$ and $Q_i \cap C = q_i$. Moreover, $h(Q_i) =$ $h(Q_{i-1})+1$ and $h(q_i) \ge h(q_{i-1})+1$ for $i = 1, \dots, m$. Q_m is maximal in R (otherwise the process can be continued) consequently (by [12]) $h(Q_0) = k.d R - m$. Also k.dim $C/q \ge m = k.dim R/Q$ hence if $h(q) \ge h(Q)$ then k.dim $C \ge d$ k.dim $C/q + h(q) \ge k.$ dim R/Q + h(Q) = k.dim R, a contradiction to k.dim R =tr. d_F(C). Thus $h(q) \leq h(Q)$. Finally k.dim $R/Q = \text{tr.d}_F Z(R/Q) \geq \text{k.dim } C/q \geq$ m = k.dim R/Q, hence k.dim R/Q = k.dim C/q.

PROPOSITION 2.5. Let $R = F\{x_1, \dots, x_k\}$ be an affine prime p.i. ring, k.d(R) = 3. Then, for every maximal ideal m in Z(R), h(m) = 3.

A. BRAUN

PROOF. Let $m \triangleleft Z(R) \equiv C$ be a maximal ideal. We have to show that $h(m) \ge 2 (h(m) \le \text{tr}_F C = \text{k.d}(R) = 3 [7, p. 178])$. Indeed, if h(m) = 1 then R_m is finite over C_m [1], hence for every prime P in R, $P \cap C = m$, we have h(P) = 1. By [12, theorem 4], 1 = h(P) = k d R - k d R/P = 3 - k d R/P hence 2 = 1k.d $R/P \neq k.d C/m = 0$, a contradiction to Theorem 2.4. If h(m) = 2, then m is contractable from R (e.g. [1]). Let P be some maximal prime to satisfy $P \cap C = m$, enough to show that k.d(R/P) \neq k.d C/m = 0 and get a contradiction. If h(P) = 1 we are done as above. Let $0 \neq Q \subsetneq P$, prime ideal in R with $Q \cap C = q$, h(q) = 1. Then since R_q is finite over C_q by [1], Q is maximal to satisfy $Q \cap C = q$, thus, since h(m) = h(q) + 1, $(R/Q)_m$ is a G-ring and by Lemma 2.3, h(P) = h(Q) + 1 = 2, hence k.d(R/P) = k.dR - h(P) = 3 - 2 = 1and done. The existence of such Q is granted since either m contains only finitely many height one primes and then R_m is a G-ring and by Lemma 2.1 any $0 \neq Q \subseteq P, Q$ prime, will do. Or, there are infinitely many q_{α} 's, $q_{\alpha} \triangleleft C$, prime, $h(q_{\alpha}) = 1, q_{\alpha} \subseteq m$. Hence there exists $q_{\beta} = q \subseteq m, Q \triangleleft R$, prime with $Q \cap C = q$, p.i.d(Q) = n = p.i.d(R). Then by [12] there exists $P' \triangleleft R$ prime, $P' \supseteq Q$ and $P' \cap C = m$, and we take $P \supset P'$ maximal to satisfy $P \cap C = m$.

REMARK 2.6. We don't know if the previous proposition is true for R, an affine prime p.i. ring with k.d(R) > 3.

LEMMA 2.7. Let $A \,\subset Z(B)$, $B = F\{x_1, \dots, x_k\}$ a p.i. ring. Let $Q \lhd B$, a prime ideal and $q = Q \cap A$. Suppose that k.d $A/q \leq k$.d B/Q. Then there are infinitely many prime ideals, Q_{α} 's, $Q_{\alpha} \supset Q$, $h(Q_{\alpha}) = h(Q) + 1$ and $Q_{\alpha} \cap A = q$ for all α .

PROOF. Let $A_q/q_q = K \subset K\{\bar{x}_1, \dots, \bar{x}_k\} = B_q/Q_q \equiv B$. Then $k.d(\bar{B}) \ge 1$. Let $\bar{V} \lhd \bar{B}$, prime ideal, $h(\bar{V}) = 1$. Then $\bar{V} \cap K = \{0\}$. Thus if V denotes its preimage in B, h(V) = h(Q) + 1, $V \supset Q$ and $V \cap A = q$. Finally, there are infinitely many such \bar{V} 's, hence infinitely many such V's.

LEMMA 2.8. Let W, Q be prime ideals of R, $W \subset Q$, satisfying $w \equiv W \cap Z(R) \subsetneq Q \cap Z(R) \equiv q$ and $h(w) \geqq h(W)$. Then there exists V, Q', prime ideals of R, $V \subset Q'$, satisfying $v \equiv V \cap Z(R) \subsetneqq Q' \cap Z(R) \equiv q$, h(V) = h(W) + 1 and $h(v) \geqq h(V)$.

PROOF. Let $R_0 \equiv R/W$, $Z_0 \equiv Z(R)/w$, $q_0 = q/w$, $Q_0 = Q/W$. We may assume that Q_0 is minimal over q_0 . If $h(Q) \ge h(W) + 1$ let $W \subsetneq V \lneq Q$ and h(V) = h(W) + 1, V prime. Then by the minimality of Q_0 , $v = V \cap Z(R) \lneq q$ and V will do where Q' = Q. Suppose therefore that h(Q) = h(W) + 1. Then $h(Q) = h(W) + 1 \le h(w) + 1 \le h(q)$. Hence

$$\operatorname{k.d} Z(R)/q \leq \operatorname{k.d} Z(R) - h(q) \leq \operatorname{k.d} R - h(Q) = \operatorname{k.d} R/Q,$$

thus k.d $Z_0/q_0 \not\leq k.d R_0/Q_0$. By Lemma 2.7 there are infinitely many Q_α 's, $Q_\alpha \supset Q_0$, $h(Q_\alpha) = h(Q_0) + 1$ for all α . Let $T(Q_0) \subset T(R_0)$ be a prime ideal, $h(T(Q_0)) = 1$ and $T(Q_0) \cap R_0 = Q_0$ (e.g., [12]). Now $R_0/Q_0 \subset T(R_0)/T(Q_0)$, they have the same Krull dimension and by [7, p. 110] again, there exists $Q_\beta \supset Q_0$, prime, $T(Q_\beta) \supset T(Q_0)$, prime in $T(R_0)$, $h(T(Q_\beta)) = h(T(Q_0)) + 1 = 2$ and $T(Q_\beta) \cap R_0 = Q_\beta$. Let $0 \neq T(V_0) \subsetneq T(Q_\beta)$, prime, such that $T(V_0) \nearrow q_0$ (we have such since $T(R_0)$ is noetherian, $h(T(Q_\beta)) = 2$ and the principal ideal Theorem is true in $T(R_0)$). Let $V_0 = T(V_0) \cap R_0$, $V_0 = V/W$. Then $h(V_0) = h(Q_\beta) - 1 = 1$ thus h(V) = h(W) + 1, $v = V \cap Z \subsetneq q$, $h(v) \ge h(W) \ge h(W) + 1 = h(V)$ and $Q' \equiv$ the preimage of Q_β in R.

COROLLARY 2.9. With the conditions of the previous Lemma, after a finite number of steps, there exists Q', V prime ideals of R, $Q' \supset V$, $V \cap Z(R) \equiv v \subsetneq Q' \cap Z(R) \equiv q$ and h(v) = h(V).

THEOREM 2.10. Let $R = F\{x_1, \dots, x_k\}$ be an affine prime p.i. ring; $q \triangleleft Z(R)$, prime, $Q \triangleleft R$, prime and $Q \cap Z(R) = q$. Then $h(q) \ge h(Q)$.

PROOF. We prove it via induction on h(q). The case h(q) = 1 is easy since R_q is a finite module over $Z(R)_q$ ([1]) hence h(Q) = 1 = h(q).

In order to prove the general case, it suffices to show that if P is some prime ideal maximal with respect to $P \cap Z(R) = q$, then h(q) = h(P). Indeed, $k.d Z(R) \ge k.d Z(R)/q + h(q) = h(P) + k.d R/P = k.d(R) = k.d Z(R)$. Thus k.d Z(R) = h(q) + k.d Z(R)/q. Now, if M is any other prime maximal with respect to $M \cap Z(R) = q$ then h(q) = k.d Z(R) - k.d Z(R)/q = (by Theorem 2.4) k.d R - k.d R/M = h(M).

Following Corollary 2.9 let $Q' \supset V$ be prime ideals of R, $V \cap Z(R) \equiv v \subsetneq Q' \cap Z(R) \equiv q$ and h(v) = h(V). We may assume that V is maximal to satisfy all these properties. Let $R_0 = R/V$, $Q'_0 = Q'/V$, $q_0 = q/v$. We may assume that Q'_0 is minimal over q_0 . If $h(Q'_0) \geqq 1$ let $V \subsetneq W \subsetneq Q'$, prime ideal in R, h(W) = h(V) + 1. Then $W \cap Z(R) \equiv w \subsetneq q$ by the minimality of Q'_0 , $h(w) \geqq h(v) + 1 = h(W) + 1 = h(W)$. Thus by Corollary 2.9 we reach after a finite step a contradiction to the maximality of V. Hence $h(Q'_0) = 1$. If $h(q_0) \geqq 1$ then by the same argument as in Lemma 2.8, $k.d Z_0/q_0 \leqq k.d R_0/Q'_0$ hence there exists $V \subsetneq W \gneqq Q'' \cap Z(R) \equiv q$ and $h(w) \ge h(v) + 1 = h(W) + 1 = h(W) = h(V) = 1$. Thus by Corollary 2.9 we reach after R and $R \cap Z(R) = w \gneqq Q'' \cap Z(R) = q$ and $h(w) \ge h(v) + 1 = h(V) + 1 = h(W)$ and by Corollary 2.9 we reach again, after finitely many steps, a contradiction to the maximality of V. Thus $h(q_0) = 1$. Now, by Lemma 2.3, Q' is maximal to satisfy $Q' \cap Z(R) = q$.

hence by Theorem 2.4, $h(q) \le h(Q')$. But $h(q) \ge h(v) + 1 = h(V) + 1 = h(Q')$ and consequently h(q) = h(Q'). The proof now is complete by the remarks at the beginning.

We now reach one of our main results:

THEOREM 2.11. Let $R = F\{x_1, \dots, x_k\}$ be a prime affine p.i. ring. Let $q \triangleleft Z(R)$ be a prime ideal, $Q \triangleleft R$ be a prime ideal maximal with respect to $Q \cap Z(R) = q$. Then

- (1) k.d Z(R)/q = k.d R/Q,
- (2) h(q) = h(Q),
- (3) k.d Z(R)/q + h(q) = k.d Z(R).

PROOF. (1) and (2) are valid by Theorem 2.4 and Theorem 2.10. To prove (3) we observe that by [12] k.dR = k.dR/Q + h(Q), but $k.dZ(R) \ge k.dZ(R)/q + h(q) = k.dR/Q + h(Q) = k.d(R)$ by (2) and (3). Thus $k.dR = tr.dZ(R) \ge k.dZ(R) \ge k.dR$, hence k.dZ(R) = k.dZ(R)/q + h(q) by comparing the previous inequalities.

COROLLARY 2.12. Let R_s be a G-ring (R, S as before), and $Q \triangleleft R_s$ prime ideal of R_s . Let $q = Q \cap Z(R_s)$. Then h(q) = h(Q).

PROOE. By Lemma 2.1 we get that Q is isolated over q. Let $(q_0)_s = q$, $(Q_0)_s = Q$. Then $Q_0 \subset R$ is a prime ideal which is isolated over q_0 , hence by Theorem 2.11, $h(q_0) = h(Q_0)$ and consequently h(q) = h(Q).

REMARK 2.13. The condition k.d Z(R) = k.d Z(R)/q + h(q) is a necessary condition for a prime ideal q in Z(R) to be contractable from R. This condition, though, is not sufficient since in the example of [9] h(q) = 5, q maximal in Z(R), k.d(R) = 5 and q is not contractable.

§3. G-Rings of the form R_s

The structure of G-rings of the form R_s , where $R = F\{x_1, \dots, x_k\}$, prime affine p.i., $S \subset Z(R)$ a multiplicative closed set, is obtained. A key result is the following:

PROPOSITION 3.1. Let R_s be a G-ring and $p \triangleleft Z(R_s)$ is a maximal ideal. Then p is a finitely generated ideal.

PROOF. Since $Z(R_s) = Z(R)_s$ then $p = p_{0_s}$ and $p_p = p_{0_{p_0}}$ where $p_0 \triangleleft Z(R)$ is prime, then $R_{p_0} = (R_s)_p$. We shall show that $p_{0_{p_0}}$ is a f.g. ideal in $Z(R_{p_0})$ and then since $Z(R_s)$ contains only finite number of maximals, we get that p is a f.g. ideal.

We construct a commutative affine F-algebra L, $L \subset Z(R_{p_0})$ with the property that if $m = p_{0_{p_0}} \cap L$ and $Q \triangleleft R_m$ is prime with $Q \cap L = m$ then Q is isolated over m. The idea is fairly simple but requires a lengthy formal procedure. Let

$$q_0 = 0 \subsetneqq q_1 \varsubsetneq q_2 \varsubsetneq \cdots \varsubsetneq q_{m_0} = p_0 \varsubsetneq q_{m_0+1} \subsetneqq \cdots \varsubsetneq q_d$$

be a maximal chain of primes in Z(R) with $m_0 = h(p_0)$, $d - m_0 = k.d Z(R)/p_0$, d = k.d Z(R) = k.d R (this can be done since $h(p_0) + k.d Z(R)/p_0 = k.d Z(R)$ by Theorem 2.11). Let $x_i \in q_{i+1} - q_i$ for $i = 0, \dots, d-1$ and $D = F[x_0, \dots, x_{d-1}]$. Then $\{q_i \cap D\}_{i=1}^d$ is a proper chain of primes in D. Moreover, $k.d Z(R) = tr.d Z(R) \ge k.d D \ge d = k.d Z(R)$ hence k.d D = k.d Z(R) and by the catenary property of D, $h(q_i \cap D) = h(q_i)$ and $k.d D/D \cap q_i = k.d Z(R)/q_i$ for $i = 0, \dots, d$. One observes that if E is an affine with $D \subset E \subset Z(R)$ then E satisfies the same height and k.d equalities for $\{E \cap q_i\}$ as D does. Let $rad((p_0 \cap D)R) = T_1 \cap \dots \cap T_i$, T_i are primes for $i = 1, \dots, l$, assume that for $i = 1, \dots, w$, $w \le l$, $p_0 \not \subset T_i \cap Z(R)$ and $p_0 \cap D = T_i \cap D$. We term such T_i , $i = 1, \dots, w$, a "bad" prime. Let $s_1 \in p_0 \setminus (T_1 \cap Z(R)) \cup \dots \cup (T_w \cap Z(R))$ and $D_1 = D[s_1]$, then $rad((p_0 \cap D_1)R) = Q_1 \cap \dots \cap Q_r$ and assume that Q_i are "bad" with respect to $(p_0 \cap D_1)$ for $i = 1, \dots, t, t \le r$. But $rad((p_0 \cap D)R) \subseteq rad((p_0 \cap D_1)R)$, then if Q_i is "bad" then either there exists a bad T_i with $Q_i \supset T_i$ and since $s_1 \in p_0 \cap D_1 = Q_i \cap D_1$ and $s_1 \notin T_i$, or T_i is good, but

$$p_0 \cap D \subseteq T_i \cap D \subseteq Q_i \cap D = (Q_i \cap D_1) \cap D = (p_0 \cap D_1) \cap D = p_0 \cap D,$$

thus $T_i \cap D = p_0 \cap D$. Now, T_i being good implies $p_0 \subseteq T_i \cap Z(R)$ hence $p_0 \subseteq T_i \cap Z(R) \subseteq Q_i \cap Z(R)$, a contradiction.

Repeating the argument several times we must stop since $k.d(R) < \infty$. Consequently there exists $E = D[s_1, \dots, s_v] \subset Z(R)$, affine with $h(q_i \cap E) = h(q_i)$, $k.d E/q_i \cap E = k.d Z(R)/q_i$. Most importantly, let $rad((p_0 \cap E)R) = W_1 \cap \dots \cap W_i$ then if $W_i \cap E = p_0 \cap E$ then $W_i \cap Z(R) \supseteq p_0$ (observe that if p_0 is maximal in Z(R), we are done, since the isolation is granted by Lemma 2.1).

Let W_i be termed "bad" (again) if $W_i \cap Z(R) \supseteq p_0$ and $w_i \cap E = p_0 \cap E$ and W_1, \cdots, W_n "bad" primes let be the with $n \leq t$. Choose $y \in (\bigcap_{i=1}^{n} W_i \cap Z(R) \setminus p_0$ and let $E_1 = E[y, 1/y] \subset Z(R)[1/y] \subset Z(R)_{p_0}$. We have that k.d $E_1 = d$, $h(p_0[1/y] \cap E_1) = h(p_0 \cap E) = h(p_0)$ and hence $k.d(E_1/E_1 \cap p_0[1/y]) = k.d(Z(R)/p_0)$ by the catenary properties of E_1 . Also $\operatorname{rad}((p_0 \cap E)R[1/y]) = \bigcap_i W_{r_i}[1/y]$ with $y \notin W_{r_i}, \{r_i\} \subset \{1, \dots, t\}$. Suppose $W_{t_1}[1/y]$ is a "bad" prime in R[1/y] then $W_{t_1}[1/y] \cap E_1 = p_0[1/y] \cap E_1$ hence $W_{r_i} \cap E = p_0 \cap E$. If $W_{r_i} \cap Z(R) \supseteq p_0$ then $y \in W_{r_i}$, a contradiction. Hence if $W_{r_i}[1/y] \cap E_1 = p_0[1/y] \cap E_1 \equiv m$ then $W_{r_i}[1/y] \cap Z(R[1/y]) = p_0[1/y]$, but

A. BRAUN

 $(W_{r_i})_{P_0}$ is isolated over $p_{0_{p_0}}$ hence $W_{r_i}[1/y]$ is isolated over $p_0[1/y]$ and by Corollary 2.12 $h(W_{r_i}[1/y]) = h(p_0[1/y]) = h(p_0[1/y] \cap E_1)$. Let $V \triangleleft R[1/y]$, prime with $V \cap E_1 = m$; we show that V is isolated over m. Indeed, $V \supset W_{r_i}[1/y]$ for some j,

$$k.d(R[1/y]/V) = tr.d_F Z(R[1/y]/V) \ge k.d(E_1/m) = k.d(E_1) - h(m)$$
$$= k.d R[1/y] - h(p_0[1/y]) = k.d R[1/y] - h(W_{r_0}[1/y]),$$

a contradiction unless $V = W_{r_i}[1/y]$. We take now $L = E_1$.

Let $\pi \in p_0$ with $\operatorname{rad}(\pi Z(R_{p_0})) = p_{0_{p_0}}$ (Lemma 2.1). We may assume that $\pi \in L$ (extend L otherwise). We finally show that p_0 is a f.g. ideal. We have the following inclusions: $L_m \subset Z(R)_m \subset R_m$, and $\Lambda \equiv L_m/\pi R_m \cap L_m \subset Z(R_m)/\pi Z(R_m) \subset R_m/\pi R_m$. Λ is noetherian $R_m/\pi R_m = \Lambda\{x_1, \dots, x_k, 1/y\}$ and k.d $R_m/\pi R_m = 0$. Hence, by [7, p. 122] $R_m/\pi R_m$ is artinian, hence $p_{0_m}^i \subseteq Z(R)_m$ for some t hence $m_m/\pi Z(R_m) \cap L_m$ is the only prime in Λ and is contracted from $R_m/\pi R_m$. Consequently Λ is artinian and by [7, p. 152, th. 3] $R_m/\pi R_m$ is a finite Λ -module. But then $Z(R_m)/\pi Z(R_m)$ being artinian implies that p_{0_m} is a f.g. ideal. Q.E.D.

THEOREM 3.2. Let $R = F\{x_1, \dots, x_k\}$ be a prime affine p.i. ring, $0 \notin S \subset Z(R)$ a multiplicative closed set. Suppose that R_s is a G-ring. Then

(1) $Z(R_s)$, R_s , have a finite number of prime ideals.

(2) Each $q \triangleleft Z(R_s)$, prime, is contracted in an isolated fashion from R_s .

(3) k.d(R_s) \leq p.i.d(R_s) = n.

(4) For each $q \triangleleft Z(R_s)$, prime, q_q is finitely generated and if q is maximal, q is finitely generated.

(5) $\overline{Z(R_s)}$ is a prüfer ring, where $\overline{Z(R_s)}$ is the normalization of $Z(R_s)$.

(6) Each finitely generated ideal in $\overline{Z(R_s)}$ is generated by n+1 (or less) elements.

PROOF. (1), (2) are consequences of Lemma 2.1. (4) is true by Proposition 3.1 and (5) is a consequence of (4) and Theorem 1.1. (6) is true by [2, p. 453]. To prove (3) we need the following observation. Let $P_1 \subsetneq P_2 \subsetneq P_3$ be prime ideals in $R, h(P_3) = h(P_2) + 1$, p.i.d $(P_1) = p.i.d(P_2)$, then there are infinitely many primes between P_1 and P_3 . Indeed, without loss of generality we assume that $P_1 = 0$, $h(P_2) = 1$. Let $T(P_2) \lhd T(R)$, prime with $T(P_2) \cap R = P_2$, then since p.i.d $(P_2) =$ p.i.d(R) there exists $T(P_3) \lhd T(R)$ prime, $T(P_3) \supset T(P_2)$ and $T(P_3) \cap R = P_3$. Now $h(T(P_3)) = 2$ and there are (by the principal ideal theorem) infinitely many height one primes under $T(P_3)$ and all but finite contracts to infinitely many

height one primes in R. Going back to R_s and invoking (1), we see that if $P \subsetneq Q$ prime ideals of R_s , h(Q) = h(P) + 1 then either p.i.d(P) > p.i.d(Q) or Q is maximal. In each case we get that $k.d(R_s) \le p.i.d(R_s)$.

REMARK 3.3. Unlike the situation in the noetherian commutative case, in general R_s being a G-ring doesn't imply that k.d $R_s = 1$ although a bound is achieved by Theorem 3.2 (3). The following example, which is adapted from an example due to G. Bergman (private communication), illustrates this phenomenon.

EXAMPLE 3.4. Let s, x be commutative variables. Let

$$R = \begin{pmatrix} k[s] + xk[s, s^{-1}, x], & k[s, s^{-1}] + xk[s, s^{-1}, x] \\ \\ xk[s, s^{-1}, x], & k[s, s^{-1}] + xk[s, s^{-1}, x] \end{pmatrix},$$

R is a prime p.i. affine ring, k.d(*R*) = 2, the generators are sI, se_{12} , $s^{-1}e_{22}$, e_{11} , xe_{21} (*I* is the identity matrix) and *R* is not noetherian since $\binom{k[s]}{b} \cdot \binom{k[s]}{k[s]} \cdot \binom{k[s]}{b}$ is a homomorphic image of *R* and is right but not left noetherian. $Z(R) = k[s] + xk[s, s^{-1}, x]$ hence, since $k[s, s^{-1}, x]$ is normal and Z(R) is integrally closed in $k[s, s^{-1}, x]$, we have that Z(R) is normal. Also conductor $(Z(R), k[s, s^{-1}, x]) = xk[s, s^{-1}, x]$. Observe that $sk[s] + xk[s, s^{-1}, x]$ is a maximal ideal in Z(R) which is *not* contracted from $k[s, s^{-1}, x]$ since $s^{-1} \in k[s, s^{-1}, x]$. But

$$T(R) = \begin{pmatrix} k[s, s^{-1}, x], & k[s, s^{-1}, x] \\ xk[s, s^{-1}, x], & k[s, s^{-1}, x] \end{pmatrix}$$

and $Z(T(R)) = k[s, s^{-1}, x]$. The primes in R contracting to $p = xk[s, s^{-1}, x]$ — a prime of height one in Z(R) — are

$$\begin{pmatrix} xk[s, s^{-1}, x], & k[s, s^{-1}] + xk[s, s^{-1}, x] \\ xk[s, s^{-1}, x], & k[s, s^{-1}] + xk[s, s^{-1}, x] \end{pmatrix}$$

and

$$\begin{pmatrix} k[s] + xk[s, s^{-1}, x], & k[s, s^{-1}] + xk[s, s^{-1}, x] \\ xk[s, s^{-1}, x], & xk[s, s^{-1}, x] \end{pmatrix}.$$

One obtains that R_q is a *G*-ring where $q = sk[s] + xk[s, s^{-1}, x]$, since p_q , q_q are the only non-zero primes which are contained in $Z(R_q) = Z(R)_q$. We also have that $k.d(R_q) = p.i.d(R_q) = 2$ and $Z(R)_q$ is a valuation ring.

References

1. A. Braun, Affine P.I. Rings and their generalizations, J. Algebra 58 (1979), 481-494.

2. P. Eakin and A. Sathaye, Prestable ideals, J. Algebra 41 (1976), 439-454.

3. E. G. Evans, Jr, A generalization of Zariski's main theorem, Proc. Am. Math. Soc. 26 (1970), 74-78.

4. V. T. Markov, On the rank of non-commutative affine algebras, Izv. Akad. Nauk 37 (1973), 284-288.

5. J. R. Matijevic, Maximal ideal transform of Noetherian rings, Proc. Am. Math. Soc. 54 (1976), 49-52.

6. C. Peskine, Une Généralisation du Main Theorem de Zariski, Bull. Soc. Math. 2^e 90 (1966), 119-227.

7. C. Procesi, Rings with Polynomial Identity, Marcel Dekker, New York, 1973.

8. Yu. P. Razmyslov, The Jacobson radical in P.I. algebras, Algebra i logika 13 (1974), 337-360.

9. L. H. Rowen, Classes of rings torsion-free over their centers, Pac. J. Math. 69(2) (1977), 527-534.

10. W. Schelter, Integral extensions of rings satisfying a polynomial identity, J. Algebra 40 (1976), 245-257.

11. W. Schelter, On the Krull Akizuki Theorem, J. London Math. Soc. 13 (1976), 263-264.

12. W. Schelter, Non-commutative affine P.I. rings are catenary, J. Algebra 51 (1978), 12-18.

DEPARTMENT OF MATHEMATICS

HAIFA UNIVERSITY

HAIFA, ISRAEL