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P.I. G-RINGS AND THE 
CONTRACTABILITY OF PRIMES 

BY 

A M I R A M  B R A U N  

ABSTRACT 

Let R = F{x~," �9 ", XE } be a prime affine p.i. ring and S a multiplicative closed set 
in the center of R, Z ( R ) .  The structure of G-rings of the form Rs is completely 
determined.  In particular it is proved that Z ( R s )  - -  the normalization of Z ( R s )  
- -  is a prii[er ring, 1 _ - k . d ( R s ) -  < _ p.i .d(Rs) and the inequalities can be strict. 
We also obtain a related result concerning the contractability of q, a prime 
ideal of Z ( R )  from R. More precisely, let Q be a prime ideal of R 
maximal to satisfy Q N Z ( R ) = q. Then  k.d Z ( R )/ q = k.d R / Q, h ( q ) = h ( Q ) 
and h ( q ) +  k.d Z ( R ) / q  = k.d z (R) .  The last condition is a necessary but not 
sufficient condition for contractability of q from R. 

Introduct ion 

Given R = F{x1,'" ", Xk}, a prime affine p.i. ring, one of our main purposes is 

to characterize the G-rings of the form Rs (R localized by $, where 0 ~ S is a 

multiplicative closed set of Z(R) ,  the center of R).  By a G-ring we mean a 

prime ring such that the intersection of all non-zero ideals is non-zero. We get 

the following theorem. 

THEOREM. Let R = F { x l , "  ", xk} be a prime affine p.i. ring, Rs - -  a G-ring 
where S C Z ( R ) ,  a multiplicative closed set. Then 

(1) Z(Rs) ,  Rs, have a finite number of prime ideals. 
(2) Each q C Z(Rs  ), a prime ideal, is contracted in an isolated fashion from Rs. 
(3) k.d(Rs) _-< p.i.d(Rs) -- n (k.d(Rs) - Krull. dim. (Rs)). 
(4) For each prime ideal q of Z(Rs) ,  qq is finitely generated and if q is maximal 

q is finitely generated. 
(5) Z(Rs) ,  the normalization of Z(Rs) ,  is a priifer ring. 

(6) Each finitely generated ideal in Z(Rs)  is generated by n + 1 (or less) 
elements. 
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Unlike the noetherian commutative case it might happen that k.d(Rs) > 1. An 

example (essentially due to G. Bergman) illustrates it. 

A related question that we try to handle is the following. Given q <3 Z(R) ,  
R = F { x , . .  ",xk} an affine prime p.i. ring, is there a prime ideal O in R such 

that O fq Z ( R ) =  q? Examples due to Rowen [9] and L. Small (unpublished) 

show that this is not always the case. On the other hand if there exists p ~ q, p a 

prime ideal of Z(R) ,  P C R, a prime ideal of R with P f3 Z ( R )  = p, p.i.d(P) = 

p.i.d(R) and h(q/p) = 1, then it is well known that q is contractable. Again this 

is not always the case, in fact, in trying to approximate a contractable prime q 

from below, the Rs - G rings occur. Anyhow certain properties of contractable 

primes are obtained, in fact we have the following 

THEOREM. R = F{xl,'" ",xk} is an affine prime p.i. ring, q C Z ( R )  a prime 
ideal. Let Q c R be a prime ideal, maximal with respect to Q fq Z ( R ) = q. Then 

(1) k.d. Z(R) /q  = k . d R / Q .  

(2) h(q)= h(Q). 
(3) k.d. Z(R) /q  + h (q) = k.d Z ( R  ). 

One can regard (3) of the last theorem as a necessary condition for contracta- 

bility of a prime ideal q in Z(R) .  This condition is not sufficient as the example 

of Rowen [9] shows. 

As for notations, we mainly use the same as in [1]. Let us mention some. We 

write q <1 C meaning that q is an ideal of C. We always write C = Z ( R )  where R 

is an affine prime p.i. ring. Z ( R )  = the integral closure of Z ( R )  in its quotient 

field. We also use the canonical isomorphism t~/Pq ~-(R/P)q. Here q <a C is 

prime and Rq means the localization of R with respect to C - q .  Now (R/P)q 
means a localization of R / P  with respect to S = C - q  + P/P in Z(R/P) .  S is a 

multiplicatively closed set if there exists a Q <1 R, prime with O D P and 

Q VI C = q, and we will use it under such assumptions. We have cause for using 

T(R)  - -  the trace envelope of R, T(R)  = R [c~, �9 �9 -, c~ ] where c~, i = 1 , . . . ,  e are 

the coefficients of the characteristic polynomials of all monomials in x~,. �9 xk of 

degree -<n 2 (n =p. i .d  (R)). T(R)  is finite over its center. We use h(q) =- 

height(q) - -  the maximal length of chains of prime ideals descending from q. The 

following commutative conventions are used: k.d(R) stands for the classical 

Kruli dimension of R, and by "f.g. module" we mean a finitely generated 

module. 
Finally R - -  a prime p.i. ring with k. dim R => 1 is said to be a G-ring if there 

exists x E Z ( R )  with R[1/x] a simple (artinian) ring. This is equivalent to the 

fact that the intersection of all non-zero ideals in R is non-zero. (See 

Kaplansky's Commutative Rings for the Commutative Analogue.) 
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The paper is organized as follows. w is purely commutative and of indepen- 

dent interest (we think) the result of which is used in w In w we prove theorems 

on contractability as well as related results. In w we complete the proof of the 

structure of G-rings. 

w All rings are commutative 

The main result here is the following 

THEOREM 1.1.* Let C be a commutative domain (not necessarily noetherian) 

satisfying the following assumptions: 
(1) C has finitely many prime ideals; 
(2) for all p <~ C, prime pp is a f.g. ideal in Cp. 

Then C is a priifer ring. 

PROOF. We prove the theorem via induction on k.d(C), and without loss of 

generality we may assume that C is local with maximal ideal m. By induction we 

have that Cp is priifer for every prime ideal p ~ m. Let x E C with rad(xC) = m 

and let T=-C[1/x] n (~. We shall show that in T every maximal ideal is 

invertible. We firstly show that T/xT is a finite C/xT n C module; the argument 

we use is essentially the one in [5], [11]. Observe that C/xC, C/xT  n C are 

artinian, k.d. (T/xT)=O and every maximal in T contains x;  we have that 

x ~ T n  C C x e + l T n  C + x C  for some e by the artinian property of C/xC. It 

suffices to show that T/xT C_ x-eC + xT /xT  since the latter is a f.g. module over 

C/xT n C hence artinian. Let d E T, then d .  x n E C for some n = n (x) and we 

can take n > e. Now x" �9 d E x ' T  n C hence x'd. = x"+ld~ + xd2 where d~ E T, 

d2 E C hence d E xT + x-tn-l~C and after n - e steps we get that d E xT + x - 'C  
hence T/xT  C x-'c + xT/xT. This implies that every maximal ideal in T is f.g. 

We next show that each maximal q in T is invertible. Indeed, let q-~.q =q 
(q-1 ~ T) and a E q-l, then a ~ t~ since q is a f.g. ideal, also ax E aq C_ q hence 

(ax )x" ~ C for some n, hence a ~ C[1/x] and consequently a E C[1/x] n C = 

T, a contradiction. Thus q- l .  q = T. 

We now show that T =  ~' is priJfer. We may assume that T is local 

with maximal m'. We also have that Tp is priifer for every prime p,p ~ m'. 

We recall some standard facts: given a,b ET ,  let H(a,b)=- 

{f(x, y) E T[x, y] If(at, bt) = 0} where x, y, t are variables and let C(H) = the 

ideal in T generated by the coefficients of the elements in H(a, b); then 7" is 

priifer iff C(H(a, b)) = T for every a, b E T [2]. Let H = H(a, b) one may easily 

* I would like to thank W. Vasconcelos for improving an earlier version of this result. 
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check that C(Hp)= C(H), where p <~ T and prime; it is also clear that H is a 

prime ideal in T[x, y]. Let p ~ m'  be a prime ideal; then Tp is pr/ifer hence 

C(Hp) = C(H)p = T, and consequently C(H)g  p. Thus if C(H)~  T we have 
that rad(C(H))  = m'. Next one observes that C(H)-~C(H)-~ C(H). Indeed let 

d E C(H)-IC K, where K is the q. field of T, and it =ECox'y j E H then 

E C~j (at)' (bty = 0 hence E(dC~s)(at )' (bty = 0, but dCs E T hence 

Y.dC~x'y ~ E H. Consequently C(H)- 'C(H)= C(H), (m')- 'C(H)= C(H). But 

(m')-mm '= T hence C(H) = m'C(H); but C(H) is f.g. and we get a contradic- 
tion via Nakayama. Thus C(H)g  m', that is, C(H) = T. Q.E.D. 

REMARK 1.2. In an earlier version of this theorem we imposed an additional 

assumption on C, namely, given q,p <~ C, primes with q C_p and k.dim(C/q)p = 
1 then (C/q)p is Japanese, and we got the following additional conclusion: Cis a 
finite module over C and in particular for every p <~ t~, prime, pp is a f.g. ideal. 

w All rings are p.i. rings 

In this section R = F{Xl,. �9  xk} is a f.g. prime p.i. ring ( ---- affine). S C Z(R)  
will always denote a multiplicatively closed set, 0 ~ S, and Rs is the localization 

obtained by inverting $. 

LEMMA 2.1. Let Rs be a G-ring (R, S are as mentioned above). Then Rs, 
Z ( R , )  have finitely many prime ideals and every prime in Z(Rs) is contracted in 
an isolated [ashion from a prime in Rs. 

PROOF. Rs being a G-ring implies that there are only finitely many height 

one primes in Rs since there exists 3' E fq P, y ~  0, 3" E Z(R)  and the intersec- 

tion is on all primes of Rs, but the minimal primes above 7Rs are finite in 

number since the same is true for 3'R in R [7, p. 107]. We may therefore assume 

that dim Rs > 1. Say k => 2 is the first integer with infinitely many primes of 
height k. There exists Pk-l, a prime ideal in Rs, with h(Pk-l) = k - 1 and Pk-z is 

contained in infinitely many primes of height k. Let Pk-2~ Pk-~, prime, we 

denote Rs/P~-z=R*, Pk-I/Pk-2=P*-I and assume that h(P*_~)= 1. By [12, 

lemma 4] there exists a prime P~-I in T(R*) with R ~ f3 P~-I = P~-~. We have 

* ' 110] all but finite number of the infinitely R*IP*s, ~_~ C T(R s)/P~-t and by [7, p. a 
many height one primes in R*tP * st k-a are contracted from TtR *~1o' ~, S]lJt  k - l .  Let 
P* 3 P*_I prime with h(P*)=h(P~_x)+l and P~<  T(R*) prime with 
p l ~  ' p,  p*.  P~-m, fq R* = Then h(P ~) > 1 and there are infinitely many primes 

{W~} in T(R *) with h(W~)= 1 and IV, ~ pl (by the principal ideal theorem in 

T(R *)). We have that h (W, fq R *) = 1 for all but finitely many a 's. Indeed, if 
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W~ = W with h ( W n  R ~ ) >  1 then w n  R~ = P*[(h(P*)=2) and 

W n R * c P*] but then W is a minimal prime over P*T(R *) in T(R *) which is 

noetherian. By the same argument { W, N R *} is an infinite family of ideals. Let 

V, <~ Rs prime with V * = W ,  O R *  then V , ~ P s i n c e  , c  V , ~ P * ,  V, ~ P~_2 but $7 

h(P) = h(Pk-l)+ 1 = k hence h(V, )  = k - 1, a contradiction to the minimality 

of k. 

We next show that each prime p in Z(Rs)  is contracted from Rs and hence 

there are finitely many primes in Z(Rs). We argue by induction on h(p). The 

case h(p) = 1 is well known (e.g., [1]). Say h ( p ) =  k, by induction there are 

only finitely many primes p l , " ' , P , ~ p .  Let x ~ p \ ( p l U . " U p , )  then 

x R s ~ R s  (otherwise x is a unit). Let rad(xRs) = v l n . . . n v t  then 

(VI n Z(Rs)', . . . (V~ N Z(Rs)) ~, C xRs M Z(Rs)  = xZ(Rs)  C p hence p = I / / n  

Z(Rs)  for some ]. Finally, each prime in Z(Rs) is contracted in an isolated 

fashion from one in Rs. This is achieved by Lemma 2.3 and an easy induction on 

the height of primes in Z(Rs). 

REMARK 2.2. Via the same lines one can prove the same for R = 

A{xl ,"  .,x~} where A is merely a central noetherian domain and R is a prime 

p.i. ring. 

LEMMA 2.3. Let p <~ C, P <I R, prime ideals with P n C = p and P is maximal 
with respect to this property. Suppose QI D Q2~ P are primes with QIA C =  

Q2 N C = q, satisfying 
(1) h(O2) = h(P)+ 1, 
(2) (R/P)q is a G-ring. 

Then Ol = O2. 

PROOF. Let (R/P)q - R *  ~-Rq/Pq, Cq/P~ ~(C/P)q =-D, we have D C R* 

By the maximality of P and (2) we have that R * is a G-ring, k.d(R *) -_> 1, hence 

T(R *) is a G-ring, but being noetherian implies that k.d T(R*) = 1. 

We need the following observation: Let v <~ Z(T(R*)),  prime and v O D' = 

w, where D '  is the integral closure of D in Z(T(R*)).  We have that 

k.d Z ( T ( R  *)) = k.d T(R *) = 1 hence by Zarisky's Main Theorem h(w) = l and 

D ' = Z ( T ( R * ) ) o  is a D.V.R. 

Continuing the proof let Q* = ( Qt/ P )q, Q ~ = ( Qz/ P )q, then h ( Q ~ ) = 1. R * D' 

is a central integral extension of R *, hence we have by "Going Up" (e.g., [10]) 

prime ideals in R*D',  O~ D Q~ with h(Q' , )=  h(Q*), h(Q~')= h(Q*) and 

Q'I O R * =  Q*, O~ n R * =  Q~. Let Q be a prime ideal in T(R*)Z(T(R*))  
with Q A R * D ' =  Q;, h ( Q ) =  1 (height one in R* is contracted from one in 

T(R *) hence one in T(R *)Z(T(R*)), e.g., [12]). Let v = Q N Z ( T ( R  *)) and 
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w = v n D' ,  then Q;  o D '  = w. Let  Q'~ n Z ( R * D ' )  = t and Q;  n Z ( R  *D') = s, 

then t _D s. We have the following inclusions: 

D' C_ Z ( R  *D') C R *D' C T(R * )Z (T (R  *)) 

U U 

t O~ 

U U 

w c s c 0'2 c O 

Now, t n D '  = s n D '  since D '  is integral over D and (q/p)q = (t n D')  n D = 

(s n D ' )  n D ;  but s n D '  = w and D "  is a D.V.R. by the previous observation, 

hence D ' =  Z(R*D')w = Z(R*D' ) , ,  h ( t )=  1 and s = t. But R * D '  is a localiza- 

tion of an integral extension of an affine p.i. ring and Krull dim Z ( R  *D'), = 1, by 

[1] we get that h(Q()  = h(Q~) and consequently h(Q*)  = h(Q*)  = 1. Q.E.D. 

THEOREM 2.4. Let R = F{xl,. . .,xk} be a prime p.i. ring, q ,o C prime. Let 

Q ,~ R be prime with Q being maximal to satisfy Q n C = q. Then h(q) <= h (Q)  

and k.dim C/q = k.dim R/Q.  

PROOF. Let  ql D q, ql <1 C be a minimal among the prime ideals of C such 

that there exists Q1 <~ R, prime, Q~ D Q and Q1 n C = ql. If q~ = q then by the 

choice of Q, Q is a maximal ideal in R hence q is maximal in C [7, p. 102] hence 

h(q)  <= k.dim C = k.dim R = h(Q).  We may assume that ql ~ q and further 

assume that h(Q1) = h ( Q ) +  1 (again by the choice of Q and ql). We have that 

( C/ q )q, = Cq,/ q,, C RqJ Qq, ~- ( R / Q )q,. The assumptions above and the minimality 

of ql imply that every non-zero ideal prime ideal of (R/Q)q, contracts to (qJq)q,, 

hence (R/Q)q, is a G-ring, and by Lemma 2.3 we have that Krull dim(R/Q)q, = 

1 and if Q ' D  Q, prime with Q ' A  C = ql then h ( Q ' ) =  h ( Q ) +  1, thus (Q,,q,) 

satisfies the maximality property. We continue the process with (q~, Q0,  by 

choosing q2 D q~, q2 <1 C minimal above q l " " .  We get the following chain of 

prime ideals q0 = q ~ q, ~ q2" '"  ~ q,,, Q0 = Q ~ Q, ~ Q2" '"  Qm-, ~ Q,,, qi <~ C, 

Qi <1R are prime ideals for i = 0 , . .  -, m and Q, n C = q~. Moreover,  h(Q,) = 

h(Q,_l)+ 1 and h(q~)>= h(qi_~)+ 1 for i --= 1 , . . . ,  m. Q,, is maximal in R (other- 

wise the process can be continued) consequently (by [12]) h(Qo)= k.d R -  m. 

Also k . d i m C / q > = m = k . d i m R / Q  hence if h(q )>:h (Q)  then k . d i m C =  > 

k.dim C/q + h(q) >~ k.dim R / Q  + h (Q)  = k.dim R, a contradiction to k.dim R = 

tr. dF(C).  Thus h ( q ) <= h ( Q ). Finally k.dim R / Q = tr.dF Z ( R / Q ) >= k.dim C / q >= 

m = k.dim R/Q,  hence k.dim R / Q  = k.dim C/q. 

PROPOSITION 2.5. Let R = F{x,,. . ., xk} be an affine prime p.i. ring, k.d(R)  = 

3. Then, for every maximal ideal m in Z ( R ) ,  h ( m ) =  3. 
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PROOF. Let m <~Z(R)=-C be a maximal ideal. We have to show that 

h(m)  >~ 2 (h(m)  <= tr~C = k.d(R) = 3 [7, p. 178]). Indeed, if h(m)  = 1 then R,, is 

finite over C,, [1], hence for every prime P in R, P n C = m, we have h(P) = 1. 

By [12, theorem 4], l = h ( P ) = k . d R - k . d R / P = 3 - k . d R / P  hence 2 =  

k.d R / P ~  k.d C/m = 0, a contradiction to Theorem 2.4, If h(m)  = 2, then m is 

contractable from R (e.g. [1]). Let P be some maximal prime to satisfy 

P n C = m, enough to show that k . d ( R / P ) ~  k.d C/m -- 0 and get a contradic- 

tion. If h(P)  -- 1 we are done as above. Let 0 ~ Q ~ P, prime ideal in R with 

Q n C = q, h(q)  = 1. Then since Rq is finite over Cq by [1], Q is maximal to 

satisfy Q n C = q ,  thus, since h ( m ) =  h(q)+ 1, (R/O), ,  is a G-ring and by 

Lemma 2.3, h(P)  = h (Q)  + 1 = 2, hence k.d(R/P)  = k.d R - h(P)  = 3 - 2 = 1 

and done. The existence of such Q is granted since either m contains only 

finitely many height one primes and then R,. is a G-ring and by Lemma 2.1 any 

0 ~ Q ~ P, Q prime, will do. Or, there are infinitely many q~ 's, q~ <~ C, prime, 

h (q~) = 1, q~ ~ m. Hence there exists qo = q ~ m, Q <~ R, prime with Q n C = q, 

p . i .d(Q)= n =p. i .d(R).  Then by [12] there exists P ' , o R  prime, P ' ~ Q  and 

P' n C = m, and we take P D P'  maximal to satisfy P N C = m. 

REMARK 2.6. We don't know if the previous proposition is true for R, an 

attine prime p.i. ring with k . d ( R ) >  3. 

LEMMA 2.7. Let A C Z(B) ,  B = F { x , .  . ., x~} a p.i. ring. Let Q <~ B, a prime 

ideal and q = Q n A. Suppose that k.d A/q  7~ k.d B/Q. Then there are infinitely 

many prime ideals, Qo' s, Q~ D Q, h ( Qa ) = h ( Q ) + 1 and Qa n A = q for all a. 

PROOf. Let A q / q q = K c K { g ~ , . . . , $ k } = B q / Q ~ - B .  Then k.d(/~)_->l. Let 

~'<~/~, prime ideal, h(I7')= 1. Then V N K ={0}. Thus if V denotes its 

preimage in B, h ( V ) = h ( Q ) + l ,  V D Q and V O A  =q. Finally, there are 

infinitely many such V's, hence infinitely many such V's. 

LEMMA 2.8. Let W, Q be prime ideals of R, W C Q, satisfying w =- 

W n Z ( R )  ~ Q n Z ( R )  = q and h (w) >~ h (W). Then there exists V, Q', prime 

ideals of R, V c  Q', satisfying v -  V A Z ( R ) ~ Q ' A Z ( R ) = - - q ,  h ( V ) =  

h ( W ) + l  and h(v)>=h(V).  

PROOF. Let Ro=- R /W,  Zo =- Z (R) /w ,  qo = q/w, Qo = Q/W. We may assume 

that Qo is minimal over qo. If h ( Q ) ~ h ( W ) + l  let W E  V ~ Q  and h ( V ) =  

h ( W ) + l ,  V prime. Then by the minimality of Qo, v = V O Z ( R ) ~ q  and V 

will do where Q ' =  Q. Suppose therefore that h ( Q ) =  h ( W ) +  1. Then h(Q)  = 

h ( W ) +  1 ~ h ( w ) +  1 <= h(q). Hence 
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k.d Z ( R  )/q <= k.d Z ( R )  - h (q) ~ k.d R - h (O) = k.d R/O, 

thus k.dZo/qo~k.dRo/Oo. By Lemma 2.7 there are infinitely many O~'s, 

O~ D Oo, h (O~)=h(Qo)+l  for all a. Let T(Qo)C T(Ro) be a prime ideal, 

h(T(Oo)) = 1 and T(Oo) N no = Oo (e.g., [12]). Now Ro/Qo C T(Ro)/T(Qo), they 

have the same Krull dimension and by [7, p. 110] again, there exists O8 D Oo, 

prime, r (oo )  D r(Oo), prime in T(Ro), h(T(O~)) = h(T(Qo))+l =2 and 

T(08) n Ro = 08. Let 0 ~ T(Vo) ~ T(Q~), prime, such that T(Vo) 25 qo (we have 

such since T(Ro) is noetherian, h(T(O~)) = 2 and the principal ideal Theorem is 

true in T(Ro)). Let Vo = T(Vo)n Ro, Vo = V/W. Then h(Vo)= h ( O ~ ) - I  = 1 

thus h ( V ) = h ( W ) + l ,  v = V n Z ~ q ,  h ( v )>=h(w)>=h(W)+l=h(V)  and 

O ' - t h e  preimage of Q~ in R. 

COROLLARY 2.9. With the conditions of the previous Lemma, after a finite 
number of steps, there exists Q', V prime ideals of R, Q 'D  V, V A Z(R)=- 
v ~ Q' A Z ( R  ) -  q and h (v )=  h(V).  

THEOREM 2.10. Let R = F{xl, " ", xk } be an affine prime p.i. ring; q <1Z(R), 
prime, Q <~ R, prime and Q N Z ( R ) = q. Then h ( q ) >= h ( Q ). 

PROOF. We prove it via induction on h(q). The case h(q) -- I is easy since Rq 

is a finite module over Z(R)q ([1]) hence h(Q)--  1 = h(q). 
In order to prove the general case, it suffices to show that if P is some prime 

ideal maximal with respect to P N Z ( R ) = q ,  then h(q )=h(P) .  Indeed, 

k . d Z ( R ) > = k . d Z ( R ) / q + h ( q ) = h ( t ) + k . d R / P = k . d ( R ) = k . d Z ( R ) .  Thus 

k . d Z ( R ) - - h ( q ) + k . d Z ( R ) / q .  Now, if M is any other prime maximal with 

respect to M n Z ( R )  = q then h(q) = k . d Z ( R ) - k . d Z ( R ) / q  -- (by Theorem 

2.4) k.d R - k.d R / M  -- h (M). 
Following Corollary 2.9 let Q ' D  V be prime ideals of R, V A Z ( R ) - -  

v ~ Q ' A  Z ( R ) - q  and h (v )=  h(V).  We may assume that V is maximal to 

satisfy all these properties. Let Ro = R /V ,  Q~ = Q'/V, qo = q/v. We may assume 

that Q~'~ is minimal over qo. If h(Q~)~>l let V ~  W ~ Q ' ,  prime ideal in R, 

h (W) = h (V) + 1. Then W n Z ( R )  - w ~ q by the minimality of Q~, h (w) _-> 

h (v) + 1 = h (V) + 1 -- h (W). Thus by Corollary 2.9 we reach after a finite step a 

contradiction to the maximality of V. Hence h(Q~)= 1. If h(qo)~> 1 then by the 

same argument as in Lemma 2.8, k.dZo/qo~k.dRo/Q~ hence there exists 

V ~ W ~ Q" with h (W) = h (V) + 1, W, Q" are prime ideals of R, W n Z ( R )  - 
w ~ Q" n Z ( R )  =- q and h(w) >= h(v) + 1 = h(V)  + 1 -- h(W)  and by Corollary 

2.9 we reach again, after finitely many steps, a contradiction to the maximality of 

V. Thus h(qo) -- 1. Now, by Lemma 2.3, Q' is maximal to satisfy Q' n Z ( R )  = q, 
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hence by Theorem 2.4, h(q)<= h(Q'). But h(q)>= h ( v ) + l  = h ( V ) + l  = 
h(Q') and consequently h ( q ) =  h(Q'). The proof now is complete by the 

remarks at the beginning. 

We now reach one of our main results: 

THEOREM 2.11. Let R = F { x , ' " , x k }  be a prime affine p.i. ring. Let 

q <~ Z ( R )  be a prime ideal, Q <~ R be a prime ideal maximal with respect to 

Q N Z ( R )  = q. Then 

(1) k.d Z(R) /q  = k.d R/Q,  

(2) h(q) = h(Q),  

(3) k.d Z ( R  )/q + h (q) -- k.d Z ( R  ). 

PROOF. (1) and (2) are valid by Theorem 2.4 and Theorem 2.10. To prove (3) 

we observe that by [12] k . d R = k . d R / Q + h ( Q ) ,  but k.dZ(R)>= 

k.d Z(R) /q  + h (q) = k.d R / Q  + h (Q) = k.d(R) by (2) and (3). Thus k.d R = 

tr.d Z ( R ) >= k.d Z ( R ) >= k.d R, hence k.d Z ( R ) = k.d Z ( R )/ q + h ( q ) by compar- 

ing the previous inequalities. 

COROLLARY 2.12. Let Rs be a G-ring (R, S as before), and 0 <~ Rs prime 
ideal o[ Rs. Let q = Q f3 Z(Rs).  Then h(q) = h(Q). 

PROOF. By Lemma 2.1 we get that Q is isolated over q. Let (qo)s =q, 
(Qo)s = Q. Then O0 C R is a prime ideal which is isolated over q0, hence by 

Theorem 2.11, h(qo) = h(Qo) and consequently h(q)= h(Q). 

REMARK 2.13. The condition k . d Z ( R ) =  k .dZ(R) /q  + h(q) is a necessary 

condition for a prime ideal q in Z ( R )  to be contractable from R. This condition, 

though, is not sufficient since in the example of [9] h(q) = 5, q maximal in Z(R) ,  

k.d(R) = 5 and q is not contractable. 

w G-Rings of the form Rs 

The structure of G-rings of the form Rs, where R =F{x~, . . - ,xk},  prime 

affine p.i., S c Z ( R )  a multiplicative closed set, is obtained. A key result is the 

following: 

PROPOSITION 3.1. Let Rs be a G-ring and p "~ Z(Rs  ) is a maximal ideal. Then 

p is a finitely generated ideal. 

PROOF. Since Z(Rs)  = Z(R)s  then p = p% and pp = P%o where po,~ Z ( R )  is 

prime, then R~ = (Rs)p. We shall show that p%o is a f.g. ideal in Z(Rpo) and then 

since Z(Rs)  contains only finite number of maximals, we get that p is a f.g. ideal. 
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We construct a commutative atiine F-algebra L, L C Z(Rpo ) with the property 

that if m = p %  O L and Q "~ Rm is prime with Q n L = m then Q is isolated 

over m. The idea is fairly simple but requires a lengthy formal procedure. Let 

qo = O ~ q, ~ q2 ~ " " " ~ q~ = po ~ q~o+, ~ " " " ~ q~ 

be a maximal chain of primes in Z ( R )  with mo = h (Po), d - m o  = k.d Z(R)/po, 

d = k . d Z ( R )  = k .dR (this can be done since h(po) + k.dZ(R)/po = k.d Z ( R )  by 

Theorem 2.11). Let x , ~ q i . , - q ,  for i = 0 , . . . , d - 1  and D=F[xo,.. . ,x~_,]. 

Then {q, AD}~=, is a proper chain of primes in D. Moreover,  k . d Z ( R ) =  

tr.d Z ( R )  >= k.d D = d = k.d Z ( R )  hence k.d D = k.d Z ( R )  and by the catenary 

property of D, h(q, n D ) = h ( q , )  and k . d D / D n q ~ = k . d Z ( R ) / q ,  for i = 

0,. �9 d. One observes that if E is an affine with D C E C Z ( R )  then E satisfies 

the same height and k.d equalities for {E N q,} as D does. Let  rad((po n D)R)  = 

T, n . .  �9 n T~, T~ are primes for i = 1,- �9 1, assume that for i = 1,. �9 w, w =< l, 

po,~ T~ A Z ( R )  and p o n D  = T~ AD.  We term such T~, i = 1 , . - . ,w ,  a "bad"  

prime. Let s, Epo\(T, n Z(R))  U . . .  U (Tw n Z(R))  and D, =- D[s,], then 

rad((po n D,)R) = O1 n . . .  n O, and assume that O, are "bad"  with respect to 

(19o n D,)  for i = 1 , . . . ,  t, t _-< r. But rad((po n D)R)  C rad((po n D~)R), then if Q, 

is "bad"  then either there exists a bad T i with Qi D T~ and since s~ ~ p o n  D~ = 

Q, N D l  and s l E T j  thus Q ,~  Tj, or ~ is good, but 

ponDC_ Tj n D  c O ,  n D  =(O,  n D I ) n D  = (port D , ) n  D = p o n D ,  

thus T j n  D = pon  D. Now, Tj being good implies po C T / n  Z ( R )  hence 

poC_ T jn  Z ( R  )C_ Q, n Z ( R  ), a contradiction. 

Repeating the argument several times we must stop since k . d ( R ) < ~ .  

Consequently there exists E = D[sl , . . . ,  so] C Z(R) ,  atfine with h(q, n E) = 
h(q,), k.d E/q, n E = k.d Z(R)/q,. Most importantly, let rad((po n E)R)  = 
W~ n �9 �9 �9 n Iv, then if Wj n E = pon  E then Wj n Z ( R )  D po (observe that if po 

is maximal in Z(R) ,  we are done, since the isolation is granted by Lemma 2.1). 

Let Wj be termed "bad"  (again) if W j n  Z ( R )  ~ po and w, n E = pon E and 

let Wi," �9 ", W, be the "bad"  primes with n =< t. Choose 

y E ( N L ~ W ~ N Z ( R ) \ p o  and let EI=E[y ,  1 /y ]CZ(R)[1 /y]CZ(R)p  o. We 

have that k . d E l = d ,  h ( p o [ 1 / y ] n E l ) = h ( p o n E ) = h ( p o )  and hence 

k.d(E~/Elnpo[1/y])=k.d(Z(R)/po) by the catenary properties of E,. Also 

rad((ponE)R[1/y])= n , w , , [ 1 / y ]  with y ~  W,,, {r,} C {l, . . ., t}. Suppose 

W,j[1/y] is a "bad"  prime in R[1/y]  then W,~[l /y]n E, =po[1/y] N E, hence 

W,j n E = pon  E. If W,j n Z ( R )  ~ po then y E W, n a contradiction. Hence if 

W,, [ l /y]  n E, = po[1/y] n E1 ---- m then W,, [ l /y]  n Z ( R  [ l /y])  = po[1/y], but 
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(Wr,)po is isolated over P%o hence W,j[1/y] is isolated over po[1/y] and by 

Corollary 2.12 h(W,j[1/y]) = h(po[1/y]) = h(po[1/y] fq E~). Let V<~ R[1/y] ,  

prime with V AE1 = m; we show that V is isolated over m. Indeed, V D 

W,j[1/y] for some j, 

k.d(R [1/y 1/V) = t r .d~Z(R [1/y ]/V) >= k.d(E,/m) = k.d(E1) - h (m) 

= k.d g [ l /y]  - h (po[1/y]) = k.d g [ l /y]  - h(Wrj [1/y 1), 

a contradiction unless V = W,j[1/y]. We take now L -= El. 

Let 1r E p0 with rad(crZ(Rpo)) = P%o (Lemma 2.1). We may assume that zr E L 

(extend L otherwise). We finally show that po is a f.g. ideal. We have the 

following inclusions: L,, C Z(R  )m C R,,, and A - L,,/TrRm A L,,, C 
Z(Rm)/TrZ(R,.)C R,./rrR,.. A is noetherian R,,/TrR,. =A{x~,.. . ,xk,1/y} and 

k.d R,./zrR,,, = 0. Hence, by [7, p. 122] R,,/zrR,, is artinian, hence p'% C_ Z(R), .  
for some t hence mm/TrZ(R,.) fq L,. is the only prime in A and is contracted from 

R,,,/~'Rm. Consequently A is artinian and by [7, p. 152, th. 3] R,./zrR,, is a finite 

A-module. But then Z(R,,)/zrZ(R,,) being artinian implies that po. is a f.g. 

ideal. Q.E.D. 

THEOREM 3.2. Let R = F{x~,. . ",xk} be a prime affine p.i. ring, O ~ S C Z(  R ) 
a multiplicative closed set. Suppose that Rs is a G-ring. Then 

(1) Z(Rs) ,  Rs, have a finite number of prime ideals. 
(2) Each q <1Z(Rs), prime, is contracted in an isolated fashion from Rs. 
(3) k.d(Rs) =< p.i.d(Rs) = n. 

(4) For each q <~ Z(Rs),  prime, qq is finitely generated and if q is maximal, q is 
finitely generated. 

(5) Z(R,)  is a priifer ring, where Z(R, )  is the normalization of Z(Rs). 
(6) Each finitely generated ideal in Z(Rs) is generated by n + 1 (or less) 

elements. 

PROOF. (1), (2) are consequences of Lemma 2.1. (4) is true by Proposition 3.1 

and (5) is a consequence of (4) and Theorem 1.1. (6) is true by [2, p. 453]. To 

prove (3) we need the following observation. Let PI ~ P2 ~ P3 be prime ideals in 

R, h (P3) = h(P2)+ 1, p.i.d(P 0 -- p.i.d(P2), then there are infinitely many primes 

between P~ and P3. Indeed, without loss of generality we assume that P1 = 0, 

h(P2) = 1. Let T(P2)<~ T(R),  prime with T(P2) N R -- P2, then since p.i.d(P2) -- 
p.i .d(R) there exists T(P3)<~ T(R)  prime, T(P3) D T(P2) and T(P3)N R = P3. 

Now h (T(P3)) = 2 and there are (by the principal ideal theorem) infinitely many 
height one primes under T(P3) and all but finite contracts to infinitely many 
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height one primes in R. Going back to R, and invoking (1), we see that if P ~ Q 

prime ideals of Rs, h ( O ) = h ( P ) + l  then either p.i .d(P)>p.i .d(Q) or Q is 
maximal. In each case we get that k.d(Rs)=< p.i.d(Rs). 

REMARK 3.3. Unlike the situation in the noetherian commutative case, in 

general Rs being a G-ring doesn't imply that k.d Rs = 1 although a bound is 

achieved by Theorem 3.2 (3). The following example, which is adapted from an 
example due to G. Bergman (private communication), illustrates this 
phenomenon. 

EXAMPLE 3.4. Let s, x be commutative variables. Let 

R = ( k [ s ] + x k [ s ' s - " x ] '  k[s ,s - ' ]+xk[s ,s- ' ,x] l  

\ xk[s,s-' ,x], k[s,s " ]+xk[s , s - ' , x ] /  

R is a prime p.i. afline ring, k.d(R) = 2, the generators are sl, se12, s-'e22, e~,, xe2, 
k s.s (I is the identity matrix) and R is not noetherian since (k~j. kt~.~ ',J) is a 

homomorphic image of R and is right but not left noetherian. Z ( R ) =  
k[s]+xk[s,s-~,x] hence, since k[s,s-' ,x] is normal and Z(R)  is integrally 

closed in k[s,s-~,x], we have that Z(R)  is normal. Also conductor 

(Z(R), k[s, s -~, xl) = xk[s, s -~, x]. Observe that sk[s] + xk[s, s-', x I is a maxi- 
mal ideal in Z(R)  which is not contracted from k[s,s-' ,x] since s - ' ~  
k[s,s- ' ,x I. But 

[ k[s,s-',x], kts, s ' , x l ]  
T(R)=\xk[s , s_~,x]  ' k[s,s- ' ,x]] 

and Z(T(R )) = k Is, s-~, x]. The primes in R contracting to p = xk [s, s-', x] - -  a 
prime of height one in Z(R)  - -  are 

and 

xk[s,s-',x], k[s,s-'l+ xk[s,s-',x]] 
xk[s,s-',x], k[s,s-']+ xk[s,s-',x]/ 

k[s]+ xk[s,s-',x], k[s,s-']+ xk[s,s-',x]) 
xk[s,s-' ,x], xk[s,s-',x] " 

One obtains that Rq is a G-ring where q =sk[s]+xk[s,s-~,x], since pq, qq 

are the only non-zero primes which are contained in Z ( / ~ ) =  Z(R)q. We also 

have that k.d(R~)= p.i.d(Rq)= 2 and Z(R)q is a valuation ring. 
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